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ABSTRACT: Necklace states arise from the coupling of otherwise
confined modes in disordered photonic systems and open high
transmission channels in strongly scattering media. Despite their
potential relevance in the transport properties of photonic systems,
necklace state statistical occurrence in dimensions higher than one
is hard to measure, because of the lack of a decisive signature. In
this work we provide an efficient method to tell apart in a single
measurement a coupled mode from a single localized state in a
complex scattering problem, exploiting the analogy with well-
characterized coupled cavities in photonic crystals. The phase
spatial distribution of the electromagnetic field has been
numerically calculated and analyzed as a function of the coupling strength and of detuning between interacting modes
respectively for coupled photonic crystal cavities and for partially disordered systems. Results consistently show that when
localized modes spectrally and spatially overlap only over a small surface extent, synchronous oscillation does not build up and
the phase spatial distribution splits into two distinct peaks. Having established such bimodal distribution as a necklace hallmark,
this paper opens the possibility to assess and eventually tailor the role of necklace states in random systems, e.g., by varying
correlations.
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Transport properties in complex systems depend critically
on the interplay between disorder, correlations, and

interaction. Communication, i.e., transport of information
through physical carriers, is described in the same parameter
space. Photons are ideal candidates for this purpose, for both
fundamental and practical reasons. Indeed, they are inherently
characterized by a negligible interaction cross section, and well-
established technologies, from self-assembly to the most
complex lithographic processes, enable efficient manipulation
of the light flow in artificial photonic structures.1

Photonic crystal fibers are perhaps the first example of a
commercial product along this line. Fabrication imperfections
however induce unwanted scattering and hinder performances,
typically determining an upper bound to the propagation length
in one-dimensional photonic waveguides.2,3 However, scatter-
ing of light should not be regarded as a simple linear loss
channel. As thoroughly discussed in ref 4, propagation is
inhibited as the sample length exceeds a critical length scale,
dubbed localization length, because of the forming of trap states
through interference. This phenomenology is related to the halt
of diffusion determined by the localization of the electronic
wave function in certain semiconductors.5 Such an apparently
detrimental factor has been exploited, e.g., by Sapienza and co-
workers, to modify the optical properties of solid-state quantum

emitters coupled to confined optical modes in 1D disordered
systems,6 suggesting that Anderson localized modes might offer
an unconventional platform for cavity quantum electro-
dynamics applications. As a matter of fact, the progress in
optical communications relies on the understanding of
transport mechanisms in the presence of disorder.
Consider, as an example, the case of light control on a chip,

in two-dimensional photonic crystal structures, affected by
random imperfections. Due to the strong dispersion in the
density of states, disorder induces the formation of localized
modes preferentially at the band edge.7 The transport
properties are strongly related to the nature of such states.
Indeed, in the language of eigenchannel statistics, localization
corresponds to the single-channel regime,8 where every
transmission channel is univocally related to the formation of
a quasi-mode in the structure.9 Interestingly, these states can be
either single localized ones, featuring exponentially decaying
tails, or multipeaked states, formed by the hybridization of two
or more separate modes. Besides robust confinement, the
complexity of light transport allowing for high transmission
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channels generally impacts the connectivity between distant
points, defined as the number of eigenchannels connecting
them.10

The occurrence of so-called necklace states was originally
predicted by Pendry,11 then observed in time-resolved
experiments12 and by measuring cumulative phase lag of the
transmitted light field13 in one-dimensional systems. In 2D
however, where the output in transmission is a complex speckle
pattern, phase lag is not easily defined and a different approach
is required to single out coupled modes. Such states in 2D
disordered structures have been experimentally induced and
monitored by means of a local control of the refractive index,
which gradually varied the coupling strength.14 However, the
probability of their natural occurrence is not yet known,
especially because of the lack of a decisive signature, enabling a
statistical study over ensembles of configurations. Information
about spectra, even if spatially resolved, is indeed not sufficient
for this purpose, since two modes that are accidentally resonant
cannot be discriminated from a single more extended mode. In
ref 15 the phase spatial probability distribution has been

suggested as a key to the problem, although remaining a single
case study.
Here we present an extensive numerical analysis and data

interpretation for the connectivity of an integrated optical
system, where scattering occurs in 2D photonic crystals with a
small amount of disorder. In particular, we define and test an
indicator that combines the near-field spectral information with
the phase spatial probability distribution, allowing the assess-
ment of necklace states on a very general basis. It will hence
enable extracting the internal coupling/transport mechanism of
complex modes in the localized regime from a single static
measurement of the field distribution. Our work provides a
general result, which is not restricted to a small sample size and
does not depend on the specific type of disorder or degree of
correlations.

■ TRANSPORT THROUGH HYBRID MODES IN 2D
DISORDERED PHOTONIC CRYSTALS

Let us consider a 230 nm thick photonic crystal (PhC)
membrane of air holes arranged in a triangular lattice with
lattice constant 325.5 nm and lateral dimension 12.1 × 13.7

Figure 1. (a) Schematic view of the nanostructured film with Gaussian disorder in the hole positions. (b) FDTD intensity spectrum for the Hz field
component of a typical 2D disordered configuration. (c) Spatial distribution of the amplitude for the Hz field component of three modes, labeled J
(λJ = 788.6 nm), K (λK = 785.1 nm), and W (λW = 783.4 nm), identified by a green square, a gray diamond, and a red star in spectrum b, respectively.
(d and e) Phase map and spatial probability distribution of the phase for modes J, K, and W, respectively.
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μm2, made of Si3N4, hence characterized by a refractive index of
2.1 and vanishing absorption in the near infrared around 800
nm. Disorder is introduced in a controlled manner by shifting
the holes’ position by a small, normally distributed, displace-
ment with respect to the position of the perfect periodic lattice,
with a given σ, measured in units of the lattice constant.
Enhanced multiple scattering with respect to an equivalent
system without the underlying periodic backbone16 induces the
formation of localized modes at random positions in space but
in a restricted frequency range, i.e., near the photonic band
edges, where the density of states is higher.4,7,17 We have
considered disordered platforms with σ = 5%. This value
guarantees an optimal interplay between order and disorder.
Simulations were performed studying the dependence of the
cavity-like quality factor Q on the amount of disorder: modes
appear near the photonic band edge in a controllable fashion,
with the highest Q values appearing closer to the photonic gap.
Furthermore, Q values decrease, increasing the disorder σ from
1% to 5%, pulling the modes inside the band gap. On the other
hand, σ values lower than 5% generate modes very similar to
the Bloch ones, not enabling the typical mode description for
random systems. In the chosen configuration, modes result
from multiple scattering and hence occur at unpredictable
positions, making the structure behave as a disordered one for
our purposes.
A schematic of the disordered nanostructured film with a

pore diameter size of 102 nm is reported in Figure 1a. The
electromagnetic field is confined in the orthogonal direction
due to the discontinuity in the dielectric function, whereas the
average periodic arrangement of holes in a triangular lattice
defines the photonic band gap in the xy-plane.
Mimicking a relevant experimental configuration, we probe

the quasi-modes of this structure by continuous excitation of
dipolar sources, parallel oriented and randomly located in the
azimuthal plane. From the time-dependent response of the
electromagnetic field after the dipoles have been switched off,
we extract the spectral response of the system in any point of
the structure by a Fourier transform analysis, yielding an
amplitude (A(x, y, λ)z) and a phase (Φ(x, y, λ)z) map for each
wavelength (λ). The subscript z refers to the Hz polarization of
the electromagnetic field. The normalized spectral response
(IN(λ)) of a 2D photonic structure, shown in Figure 1b, is
defined as the integral

∬λ λ=I A x y x y( ) ( , , ) d d
(1)

where the normalization is performed with respect to the
maximum value of I(λ), i.e., IN(λ) = I(λ)/max(I(λ)). More
details about the simulation methods are given in the
Supporting Information.
Several modes, with a high degree of spatial localization, are

identified by the peaks in Figure 1b. In Figure 1c we report the
spatial distribution of the amplitude for the Hz field component
of three different modes, labeled J, K, and W, corresponding to
the green square (λJ = 788.6 nm), gray diamond (λK = 785.1
nm), and red star marker (λW = 783.4 nm) in the calculated
intensity spectrum (Figure 1b). It is worth noting that, although
these simulations require the combination of high spatial and
spectral resolution, the extracted information would not be
sufficient to tell the dynamics of transport for different
calculated photonic modes. Indeed, the mode J has a quality
factor of ∼5700, defined as Q = λpeak/Δλ (λpeak and Δλ identify
the peak spectral position and the full width at half-maximum,

respectively), while the mode K and the mode W have similar
Q values (∼2800 and ∼2400, respectively). In order to estimate
the spatial extent of the photonic mode, we use the inverse
participation ratio as defined in ref 18:
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where the integral is performed over the detector plane, while
H expresses the magnetic field. In particular, mode J is very
localized, i.e., 1/RIP ≈ 1.5 μm2. On the other hand, concerning
modes K and W, we find similar spatial extents of 1/RIP ≈ 5.3
μm2 and 1/RIP ≈ 6.7 μm2 for the λK = 785.1 nm and λW = 783.4
nm resonance, respectively. However, as we will demonstrate
below, light at 785.1 nm tunnels through a single mode,
whereas transport at 783.4 nm relies on a two-step process,
more similar to what would happen in a network of connected
nodes. When the state results from the hybridization of two
originally isolated modes, another time scale adds to the
resonance lifetime τ = 1/Γ and that is the inverse of the
coupling constant g. Note that, in the limiting case of g ≫ Γ,
strong coupling occurs and the state recovers a single-mode
character, although spatially extended over a superposition of
the uncoupled field profiles. The difference in quality factors
and spatial extents associated with these three states is not
surprising and reflects the statistical character of the multiple
scattering underlying phenomenon.
In order to spot the different behaviors, we analyze not only

the amplitude but also the spatial phase map and extract its
spatial probability distribution, as shown in Figure 1d and e. As
pointed out in ref 15, the probability distribution of detecting a
certain phase is a complexity index, which turns out to be
single-peaked for standing waves and broad for traveling waves.
On the other hand, two weakly coupled modes (g ≲ Γ),
although oscillating at the same frequency (within the
resonance spectral width), might be not synchronized, thus
exhibiting a double peak in the phase distribution. Such distinct
features are clearly visible in Figure 1e. In fact, the phase spatial
probability distribution (PSPD) shows a single-peaked profile
for the eigenmodes J and K (green square and gray diamond
marker) or a double-peaked profile for the W resonance at
783.4 nm (red star marker).
Therefore, we raise the question: can the double-peaked

phase profile be considered as a unique indicator of a transport
mechanism based on a two-step process characterized by
weakly coupled eigenmodes ? In this article, such a hypothesis
is tested on a well-known system of coupled PhC-based
nanocavities in which the coupling between resonant modes
can be controlled. We then extend the concept to disordered
structures, where we varied the spectral overlap between
modes. Coherent results confirm the hypothesis here
presented.

■ COUPLED PHOTONIC CRYSTALS CAVITIES: A TEST
BED CONFIGURATION

Photonic crystal cavities (PCCs) are dielectric point defects in
the photonic crystals’ periodic lattice that generate electro-
magnetic localized states in the photonic band gaps.1 Coupled
PCCs are also denominated photonic crystal molecules
(PCMs) due to the analogy with atomic states. The
molecular-like interaction, characterized by an energy splitting
of the normal modes,19 is achieved by an evanescent tunneling
between each single PCC resonant mode whenever the
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frequency matching and spatial overlap between them are
fulfilled.20−22

Recently, a way to engineer the design of PCMs has been
proposed allowing an accurate control of the ground-state
parity.23,24 The coupling constant g between the atomic modes
can be tuned and even changed in sign by adjusting the hole
diameter of the five central pores between two cavities,
highlighted in green in Figure 2a. In more detail, this diameter

reduction produces a continuous decrease of g, given by the
overlap integral between the two atomic modes weighted over
the dielectric function of the photonic system,25 reaching the
weakly coupling regime (g ≲ Γ) and also a degenerate
condition (g ≈ 0).

Photonic Crystal Molecule Characterization. In order
to test our conjecture about the phase behavior in the weak
coupling regime, we have considered the same structure
analyzed in ref 24: a 320 nm thick GaAs (n = 3.484)
membrane with lateral dimensions of 7.2 × 7.3 μm2. The
photonic structure is composed by a two-dimensional triangular
lattice of air holes with a lattice constant of 308 nm. The pores
have a diameter of 193.2 nm, leading to a 35% filling fraction.
The single cavity is formed by four missing holes, and it was
largely characterized in ref 26. We have considered photonic
molecules resulting from the coupling of two cavities (labeled
C1 and C2) aligned along the principal K-axis of the photonic
crystal, as shown in Figure 2a. We will use the labels M1 and
M2 to indicate the two main modes of the single cavity.
Figure 2b reports the spectrum of the photonic structure

depicted in panel a in which the five central holes’ size was set
equal to 175 nm. The label Pj was used to enumerate the four
different eigenmodes with increasing index for decreasing
wavelength. The pairs P1, P2 and P3, P4 can be modeled in
term of two coupled oscillators with almost the same free
frequency, whose interaction is mediated by the coupling
strength g.19,21 The molecular mode splitting between the lower

and the excited state is given by Δ + g42 2 , where Δ expresses
the detuning.19 Hence, assuming a vanishing detuning
(nominally identical cavities), the wavelength splitting between
the peaks P1, P2 and P3, P4 gives a direct estimation of the
coupling strength absolute value. Each peak is a hybrid mode,
whose spatial distribution is delocalized over the molecule23

(for more details see also Figure 3). In particular, P1 and P2
modes result from a small but sizable coupling between the two
M1 modes of C1 and C2. Whereas P3 and P4 are generated by
the large coupling between the two M2 modes of the single

Figure 2. (a) Scheme of the modified PCM (in green, five central
pores with reduced diameter 175 nm) used to tune the coupling
strength between the two PCCs labeled C1 and C2. The K-axis is
identified by the x-coordinate. (b) FDTD spectrum for the Hz field
component of the system in panel a. It shows four fundamental modes.
The label Pj was used to enumerate the four different eigenmodes with
increasing index for decreasing wavelength.

Figure 3. (a) Spectral shift of the peaks P3 and P4 as a function of the hole diameter of the five central pores (dc). (b) Evolution of the resonant
modes P3 and P4 near the degenerate point dc = 255 nm (red curve) as a function of the wavelength (Hz field component shown). (c and d) Spatial
distributions of the real part of the Hz component of P3 and P4 when dc = 250 nm (blue curve in panel b) and dc = 260 nm (green curve in panel b).
(e and f) Spectral shift and the evolution for the Hz field component of the normalized intensity spectra near the degenerate point (dc = 193 nm) of
peaks P1 and P2. (g and h) Spatial distributions of the real part of the Hz component of the modes P1 and P2 before (dc = 185 nm, blue curve in
panel f) and after (dc = 200 nm, green curve in panel f) the degenerate point.
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cavity. Indeed, due to the spatial properties of the modes M1
and M2,26,27 the coupling between M1 modes is smaller with
respect to the interaction between the field in M2, i.e., λP1 − λP2
= 1.7 nm ≳ Δλ, while λP3 − λP4 = 16.4 nm ≫ Δλ, where Δλ is
the resonance line width, estimated to be on the order of 1 nm.
From Strong to Weak Coupling. Following the seminal

work of ref 24 the dynamics of the four molecular-like modes is
summarized in Figure 3. Let us now focus only on the dynamics
of the resonant states P3 and P4. Starting from a modified pore
diameter size (dc) of 160 nm, corresponding to 19 nm of
wavelength splitting, we observe that an increase of the central
hole’s diameter size produces a continuous decrease of the
photonic coupling up to zero splitting (red diamond in Figure
3a). Indeed, the spectrum shows a single resonant mode for dc
= 255 nm, as evident from the red curve in Figure 3b, meaning
that the photonic coupling is decreased down to a value below
the mode broadening. This leads to a degeneracy of the P3 and
P4 modes. With a further increase, a clear crossing is observed:
the lower energy state P3 changes as a function of dc. In more
detail, Figure 3 panels c and d report the spatial distribution of
the real part of the Hz component before (blue diamond
marker in panel a) and after (green diamond marker in panel a)
the degenerate point (red diamond marker in panel a): the field
distribution of P3 and P4 interchanges passing through the
degenerate condition. This is due to a dielectric-induced tuning.
Moreover, increasing the holes’ diameter size means subtracting
dielectric material, accordingly with the observed blue shift of
both modes. A local change of the dielectric environment in the
central region between C1 and C2 produces a modification of

the lower energy state. The evolution of the resonant modes P1
and P2 shows similar behavior (see Figure 3 bottom panels).24

Spatial Probability Distribution of the Phase as
Indicator for the Different Coupling Regimes. We are
now in the position to explore the PSPD both in the strong and
in the weak coupling regime between nominally identical
cavities. The phase distribution, calculated as described in the
previous sections, shows a double-peaked profile when two
PCC modes are weakly coupled (Figure 4a and c). On the
other hand, it displays a single-peaked profile when the two
PCC modes are strongly coupled, as shown in the insets of
Figure 4panels b and d. Moreover, to identify each of the two
components of the double-peaked profile, we have isolated the
contribution of the two PCCs, evaluating the PSPD only on a
rectangular detector centered on C1 (red-shaded areas) and C2

(green-shaded areas), respectively. A finite phase shift Δφ,
equal to the distance between the two peaks forming the
double-peaked profile (blue-shaded area), arises as the cavity
modes are weakly coupled, i.e., in the range g ≤ Γ. This leads to
a double peak in the PSPD produced by the weak coupling of
the two M1 modes (Figure 4a) and of the two M2 modes
(Figure 4c) when the modified hole diameters are equal to 193
and 255 nm, respectively. On the contrary, the field oscillates in
phase when the cavity modes are strongly coupled (g ≫ Γ);
hence a single peak appears in the PSPD for the P1 and P2
resonances (P3 and P4 peaks), as shown in the inset of Figure
4b (Figure 4d).
Δφ as a function of the wavelength splitting between the

molecular modes P1 and P2 (P3 and P4) is reported in Figure
4b (Figure 4d). The phase difference between the two single

Figure 4. (a) Spatial probability distribution of the phase (PSPD) for the Hz field component of the modes P1 and P2 when dc = 193 nm
(degenerate condition) exhibiting a double-peaked profile. (b) Phase difference as a function of the wavelength splitting between the molecular
modes P1 and P2 before and after the crossing point (λP1 − λP2 = 0). The inset shows the single-peaked PSPD corresponding to the strong coupling
between the M1 modes of the two PCCs. (c) PSPD for the Hz field component of the peaks P3 and P4 corresponding to the weak coupling between
the two M2 modes of C1 and C2, once more characterized by a double-peaked profile. (d) Phase difference relative to the molecular modes P3 and
P4 before and after the crossing point (λP3 − λP4 = 0). The inset shows the single-peaked PSPD when the strong coupling regime is reached. The
error bars are evaluated as the standard deviation between different fitting procedures. The red-dashed rectangles identify the space parameter in
which g ≤ Γ, i.e., the weak coupling zone. Note that the reported probability distributions have π-periodicity.
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cavities becomes relevant only in a range in which the coupling
constant is equal or lower with respect to the radiative losses
(red dashed rectangle zone in the figures). In our case, Δφ
vanishes when the coupling constant exceeds Γ. Interestingly,
in the weak coupling regime the phase lag Δφ is finite but is
not well-defined, as it strongly depends on the excitation or
initial conditions. On the other hand, Δφ is completely
insensitive to initial conditions when the coupling constant
increases.
In summary, two weakly coupled modes, although oscillating

at the same frequency with some nonzero spatial overlap, are
not synchronized; hence they exhibit a double-peaked profile in
the spatial probability distribution of the phase.

■ SIGNATURES FOR HYBRID MODE FORMATION IN
DISORDERED PHOTONIC CRYSTAL STRUCTURES

Let us now apply such numerical analysis to a disordered
configuration that is different with respect to the one discussed
in the second section. The difference is only in the arrangement
of the air holes inside the membrane. Following the discussion
of the previous sections, we make the hypothesis that a hybrid
state results from the coupling of distinct localized ones and
that this results in a double peak for the PSPD parameter. We
further confirm this assumption by combining this information
with the mode profile as a function of a controlled detuning of
one of the modes with respect to the other. In particular, we
locally change the refractive index of a single scatterer (ns)
around the maximum value of the field distribution (black
dashed circle in Figure 5a). This single scatterer was varied
from ns = 1 to ns = 2 with a step of 0.05. For each value of ns,
the procedure presented in the second section was applied. As
most of the modes are localized away from the scatterer, they
are insensitive to this local perturbation.
Nevertheless, Figure 5b shows the evolution for the Hz field

component of the normalized intensity as a function of
wavelength for two modes (A1 and A2) as a function of ns.
These two modes are spatially close and detuned in frequency

(Figure 5a and blue curve in Figure 5b). A degenerate
condition or a spectral overlap is observed for ns = 1.43,
corresponding to the red curve in Figure 5b. Increasing the
dielectric perturbation (ns = 1.45), the peak positions of modes
A1 and A2 are inverted with respect to the situation depicted in
Figure 5a: a crossing feature is observed between these two
resonances.
This is demonstrated in the bottom panels of Figure 5. At the

crossing condition, when ns = 1.43, the spatial field distribution
has a bilobated profile, clearly formed by the combination of
mode A1 and mode A2 (Figure 5c). Moreover, the spatial
probability distribution of the phase shows a double-peaked
profile with a splitting of δϕ = 0.4π (Figure 5d). In order to
identify the underlying localized modes, we have calculated the
phase contribution from two spatially isolated areas, identified
with dashed rectangles in Figure 5c and reported as red- and
green-shaded curves in panel d. The area of interest in modes
A1 and A2 is clearly evident when we calculate the two binary
phase maps reported in Figure 5e: black color denotes points
with a phase between 0.44π and 0.57π and in the range 0.59−
0.72π for modes A1 and A2, respectively. These two spatial
distributions identify two distinct spatial regions associated with
the standing components of the two modes, which oscillate at
the same frequency but with a nonzero phase lag. Moreover, a
small spatial overlap zone, compatible with the weak coupling
condition, can be recognized in the red-highlighted area. This
supports the picture of two weakly coupled eigenmodes,
overlapping both spectrally and spatially, to form a hybrid state
in which light transport relies on a two-step process. In analogy
to the one-dimensional case, we dub these modes necklace
states.
A similar analysis performed on mode K of the disordered

configuration depicted in Figure 1 and reported in the
Supporting Information confirms instead that a single peak in
the spatial probability distribution corresponds to a shift
without splitting of the spectrum upon perturbation.

Figure 5. (a) Spatial distribution of the real part of the Hz field component for the two resonances, labeled A1 and A2 in the wavelength spectrum,
reported in panel b, and corresponding to a local refractive index (ns) of 1.4. The position of this scatterer, related to the maximum value of mode A2,
is marked by the black dashed circle. (b) Evolution of the Hz-normalized intensity spectra as a function of wavelength for ns equal to 1.40 (blue
curve), 1.43 (red curve), and 1.45 (green curve). (c, d, and e) Spatial distribution of the real part of the Hz field component, related to the phase
probability distribution, and binary phase maps, when the crossing condition (ns = 1.43) is met.
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■ SUMMARY

In summary, this work numerically investigates the formation of
localized and hybrid modes, due to symmetry breaking in
partially disordered photonic crystals. In order to establish the
role of so-called necklace states in the transport properties, we
define a unique signature for weakly coupled modes, based on
the near-field spatial distribution of the phase. This establishes a
benchmark in the study of 2D disordered systems. The phase
spatial probability distribution has been analyzed on a test bed
architecture of coupled photonic nanocavities, as a function of
their coupling strength. Similar results showing a double-
peaked profile have been produced in a simulated experiment,
where the relative detuning between isolated localized modes
was brought to zero.
The method here discussed in order to assign a necklace

state character from the phase spatial modulation of a given
mode could be meaningfully extended to experimental cases. In
fact, many near-field methods have shown high-resolution
phase imaging in different nanoresonators, such as plasmonic
nanorods and photonic crystal cavities.28−30 These experimen-
tal methods exploit scattering scanning near-field optical
microscopy in combination with pseudoheterodyne detection
or with the analysis of the spatial modulation of Fano line
shapes to retrieve the phase information along the sample
surface. Therefore, they could be easily extended also to
photonic modes localized in disordered systems, like the ones
presented theoretically in our paper.
Our conclusions provide a tool to tell apart necklace states

from single isolated modes and will be relevant to assess their
role in the transition between diffusion and Anderson
localization in random systems. Given the simplicity of the
proposed analysis, a systematic study of necklace state
occurrence as a function of correlations in random media can
be envisaged.
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